Испытательный центр электротехнического и энергетического оборудования Центра инжиниринга воздушных линий электропередачи общества с ограниченной ответственностью ООО «Инженерный центр ОРГРЭС»

Адрес: 141372, Московская область,

Сергиево – Посадский район, пос. ОРГРЭС

e-mail: <u>info@orgres-ec.ru</u> Тел. 8 (495)993-00-17 Аттестат аккредитации №RA.RU.21AT53 от 30.10.2017 г.

УТВЕРЖДАЮ:

Руководитель ИЦ Э и ЭО ЦИВЛ

ООО «ИЦ ОРГРЭС»

ицэ ж Сивп Р.С. Каверина 2018 г.

Протокол №1.2018.039 от 26.10.2018 г.

Идентификационный номер испытуемого

образца:

Заказчик на проведение испытаний:

Сборная железобетонная стойка СК 26.1-2.3 Сб

для опор ВЛ

ТОО «Темирбетон»

Адрес:040008, Республика Казахстан, Алматинская область, г. Талдыкорган, ул.

Абылайхана, 266

Основание для проведения испытаний:

Договор №1.2018.042 от 28.09.2018 г.

Изготовитель продукции

ТОО «Темирбетон»

Адрес:040008, Республика Казахстан, Алматинская область, г. Талдыкорган, ул.

Абылайхана, 266

Вид испытаний, документ на соответствие которому проводились испытания

Испытания по проверке прочности, жесткости и трещиностойкости на соответствие СТ ТОО 390655464-032-2010 «Стойки сборные железобетонные, конические, кольцевого сечения, для опор высоковольтных линий электропередач напряжением 35-750 кВ с фланцевым соединением — марки СК» ГОСТ 22687.1-85 «Стойки железобетонные центрифугированные для опор высоковольтных

линий электропередачи»

Дата проведения и условия проведения испытаний

Начало испытаний -25 октября 2018 г. Окончание испытаний -25 октября 2018 г.

Температура — плюс $4 \, \mathrm{C}^{\circ}$ Скорость ветра — $2 \div 3 \, \mathrm{m/c}$

На 10 листах

1 Объект испытаний

На испытание представлен образец сборной железобетонной стойки **СК 26.1-2.3 Сб,** предназначенный для высоковольтных опор при строительстве линий электропередачи в труднодоступных районах, *рисунок* 2. Стойка разработана Научно-исследовательским институтом транспортного строительства (ОАО "ЦНИИС"), комплект чертежей - №3520.

Стойка **СК 26.1-2.3 Сб** состоит из двух конических центрифугированных секций длиной по 13,0 м фланцевого соединения. Диаметр стойки в комле -650 мм, в вершине -410 мм. Толщина стенки -55 мм +5; -3.

Проектный класс бетона железобетонной стойки В40. В качестве напрягаемой арматуры применены арматурные канаты К7, в качестве ненапрягаемой – арматура А400.

Масса верхней секции - 3260 кг. Масса нижней секции – 4255 кг.

2 Цель испытаний

Механические испытания стойки проводились с целью определения:

- качества изготовления и возможности монтажа;
- прочности в течение 1 минуты стойка должна выдержать предельные нагрузки, равные 140% при разрушении по арматуре и 160% при разрушении по бетону;
- трещиностойкости ширина раскрытия трещин при контрольной нагрузке, равной 83,3% от расчетной (2,00 тс) должна быть не более 0,186 мм,
- деформативности предельное отклонение верха стойки при контрольной нагрузке, равной 100% (2,4 тс) от расчетной, не должно превышать нормативного значения, равного 1086 мм;
 - эксплуатационной пригодности оценивается по результатам испытаний.

3 Методы испытаний

Таблица 1

Проверяемый (испытываемый) параметр, номер	Пункт метода испытаний			
пункта требований по НД				
Качество изготовления - СТ ТОО 390655464-032-2010	МТ 701.000.071-86 «Методика			
«Стойки сборные железобетонные, конические,	механических испытаний			
кольцевого сечения, для опор высоковольтных линий	элементов линий			
электропередач напряжением 35-750 кВ с фланцевым	электропередачи», п. 4 и п. 6.			
соединением – марки СК», п. 3.1.3, 3.1.4	ГОСТ 22687.1-85 «Стойки			
Деформативность, трещиностойкость, прочность -	железобетонные			
ГОСТ 22687.1-85 «Стойки железобетонные	центрифугированные для опор			
центрифугированные для опор высоковольтных линий	высоковольтных линий			
электропередачи» Приложение 2.	электропередачи» Приложение 1			

4 Программа испытаний

- 4.1 Перед испытанием стойки производилось ее освидетельствованием
- проверка соответствия фактических размеров элементов конструкции проектным данным, которые не должны превышать следующих значений:
 - линейные размеры при длине стойки $26,0 \text{ м} \pm 80,0 \text{ мм}$;
- предельное смещение центров отверстий под болтовое соединение двух деталей (фланцев) исходя из условия собираемости конструкции при монтаже $-\pm 0.5$ мм;
 - неперпендикулярность фланца (поверхности фланца) 0,001 базы;
- плотность болтового соединения должна быть такой, что щуп 0,3 мм не должен проходить между деталями в районе болтового соединения на глубину более 20 мм;
 - местная неплотность фланцевого соединения 2 мм.
 - проверка качества изготовления:
 - - раковины на боковой поверхности;
 - - местные наплывы и впадины;
 - - околы бетона в торцах;
 - - трещины;
 - - щели по линиям разъема полуформ
- **4.2** Стойка испытывалась горизонтально по схеме консоли с защемлением на конце в соответствии со схемой опирания и нагружения, установленной требованиями ГОСТ 22687.1-85, Приложение 1.

Схема испытаний приведена на рисунке 1.

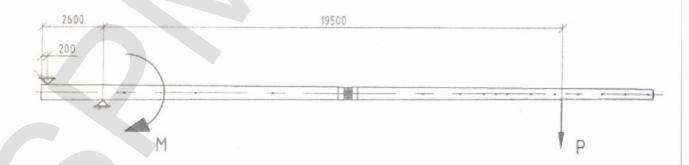


Рисунок 1 – Схема испытаний стойки СК26.1-2.3Сб

Закладные детали (сквозные отверстия для крепления траверс) располагались поперёк приложения нагрузки Р.

Стойка устанавливалась на универсальном горизонтальном стенде.

4.3 Проверка прочности, жесткости и трещиностойкости проверялась нагрузками (Р), соответствующими контрольным значениям, приведенным в таблице 2.

Таблица2

Марка	Параметр	Ступень нагрузки, %										
стойки		20	40	60	83,3	100	110	120	130	140*	150	160*
	Нагрузка, (тс)	0,48	0,96	1,44	2,00	2,4	2,64	2,88	3,12	3,36	3,60	3,84
	Ширина трещин, мм	-	-	_	0,186	-	-	-)	-	-	-	-
	Прогиб**, мм	-	-	-	-	1086	-	-	-	-	-	+

^{*} при разрушении по арматуре – $\kappa = 1,4$, при разрушении по бетону – $\kappa = 1,6$.

В процессе испытаний фиксировались:

- значения нагрузки и соответствующий прогиб, при котором появляются поперечные и наклонные трещины в бетоне;
- величина прогиба и ширина раскрытия трещин при достижении контрольных значений нагрузок.

На каждой ступени загружения испытываемая стойка выдерживалась под нагрузкой не менее 10 мин. После приложения контрольной нагрузки при контроле трещиностойкости (83,3 %) и жесткости (100 %) от расчётной нагрузка выдерживалась в течение 30 мин.

Во время выдержки под нагрузкой производился тщательный осмотр поверхности стойки и фиксировались появившиеся трещины, прогибы вершины стойки, деформация соединительного фланца и ширина раскрытия трещин. Контролируемые показатели фиксировались в начале и в конце каждой выдержки.

Трещины измерялись на приопорном участке, а ширина раскрытия трещин определялась как среднее значение на длине стойки 1,0 м.

4.4 Нагрузка задавалась натяжением силового троса электрической лебедкой ступенями 20%, 40%, 60%, 83,3%, 100% и далее через 10% до 160% от расчетных нагрузок.

Стойка считается выдержавшей испытания, если:

- отклонение вершины стойки не превышает нормативного значения:
- величина раскрытия трещин не превышает нормативного значения;
- в течение 1 минуты при предельных нагрузках не зафиксировано видимых разрушений.

Запрещается передача, частичное или полное копирование, перепечатка без письменного разрешения OOO «ИЦ ОРГРЭС».

^{** -} при испытании одного изделия фактический прогиб не может превышать контрольный прогиб более чем на 10% (ГОСТ 8829-94 п. 9.2.4)

5 Средства измерений, испытательное и вспомогательное оборудование

мспытания аблица3

			12.2	1 аолица
№ п/п	Наименование	Заводской номер	Предел/класс точности	Срок окончания действия поверки (калибровки)
1	Электрические динамометры	ЭВ 10 №050912,	2 класс	08.10.2019
2	Анемометр чашечный МС-13	60527	2 класс	14.10.2019
3	Taxeoмeтр электронный SOKKIA TOPCON SET 250RX	118436	2 класс	18.07.2019
4	Секундомер электронный «Интеграл-С-01»	303115	2 класс	11.12.2018 г.
5	Рулетка измерительная SPARTA (0 – 50) м	314405	2 класс	17.09.2019.
6	Термогигрометр ИВА-6	OB88	2 класс	28.01.2019 г.
7	Штангенциркуль ШЦ-II-250- 0,1	K320842	2 класс	07.06.2019 г.
8	Микроскоп отчетный МПБ-2	8809722	2 класс	25.07.2019
9	Измеритель прочности бетона Пульсар -1	318	2 класс	06.02.2019 г.

6 Результаты испытаний

- 6.1 При сборке стойки установлено:
- основные геометрические размеры соответствуют размерам, указанным в чертежах;
- прогиб стойки отсутствует;
- стойка по качеству изготовления удовлетворяют нормативным требованиям местные наплывы и впадины на наружной поверхности стойки и торцах, а так же околы на торцах отсутствуют;
 - плотность болтового и фланцевого соответствует нормативным требованиям и не превышает 2 мм,
 - прочность бетона на момент испытаний составила 680 720 кгс/см².
- **6.2** Результаты испытаний стойки на трещиностойкость, деформативность и прочность приведены в таблице 4.

Запрещается передача, частичное или полное копирование, перепечатка без письменного разрешения OOO «ИЦ ОРГРЭС».

^{н эо} цива Таблица4 Погрешность Определяемый показатель, Норматив Результаты измерения по ед. измерения качества испытаний НД 3 1. Трещиностойкость при нормативной нагрузке 83,3 % Ширина раскрытия трещин при нагрузке Р.83.3% = Трещины 2,00 тс, мм 0.186 на длине $\Pi\Gamma \pm 2$ 1 м от заделки мах.- 0,150 2. Деформативность при расчетной нагрузке 100% 1086 ΠΓ ±2 Перемещения при нагрузке $P_{100\%} = 2,40$ тс, мм 1075 3. Прочность при предельных нагрузках - 160% ΠΓ ±2 Предельная нагрузка по прочности 3,36 3.36 арматуры - Р_{140%}., тс Предельная нагрузка по прочности

3.84

3.84*

бетона - Р_{160%}..., тс

6.3 Испытания образец сборной железобетонной стойки **СК 26.1-2.3 Сб** производства **ТОО** «Темирбетон» (республика Казахстан), приведены на *рисунках 3 - 6*.

Руководитель испытаний:		
Заместитель руководителя ИЦ Э и ЭО ЦИВЛ	подпись	Л.А. Дубинич

^{*}После 2-х минутной выдержки при нагрузке 3,84 mc произошло разрушение стойки со стороны заделки на расстоянии 2,10 м, рисунок 7.

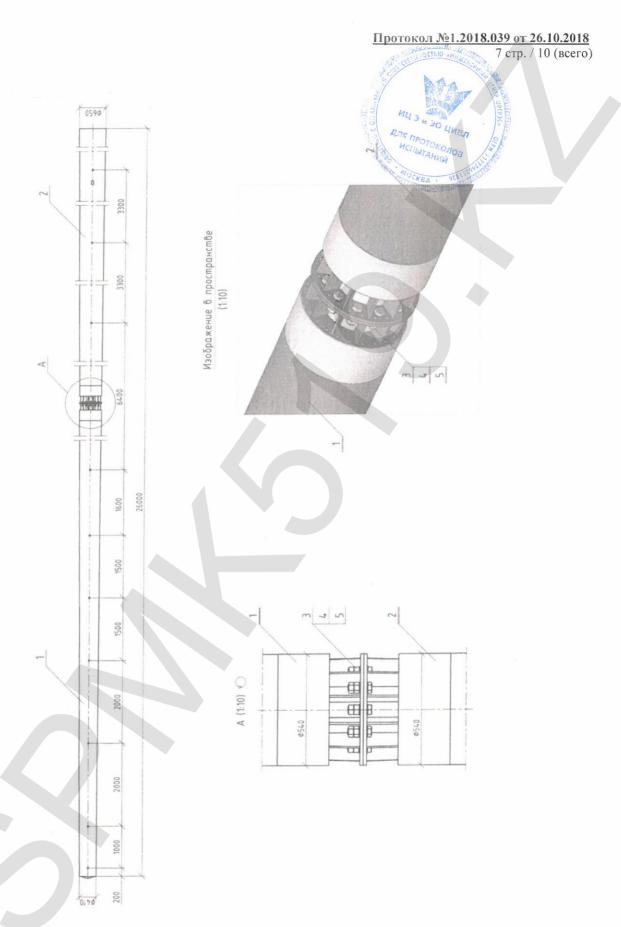
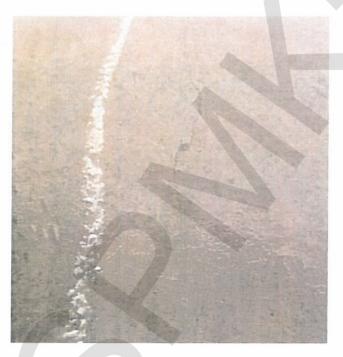


Рисунок 2 – Общий вид сборной железобетонной стойки СК 26.1-2.3 Сб

Рисунок 3 — Сборная железобетонная стойка СК 26.1-2.3 Сб, установленная на испытательном стенде


Рисунок 4 – Отмеченные трещины у заделки стойки СК 26.1-2.3 Сб

Запрещается передача, частичное или полное копирование, перепечатка без письменного разрешения OOO «ИЦ ОРГРЭС».

при нагрузке Р=2,0 тс (83,3%)

Рисунок 5 – Испытания сборной железобетонной стойки СК 26.1-2.3 Сб

Трещина у заделки (83,3 %)

Трещина в кромке заделки фланца (100%)

Рисунок 6 – Трещины у заделки и в кромке заделки фланца нижней секции стойки СК 26.1-2.3 Сб

Рисунок 7 – Разрушение сборной железобетонной стойки СК 26.1-2.3 Сб при нагрузке 3,84 тс (160%)

Запрещается передача, частичное или полное копирование, перепечатка без письменного разрешения ООО «ИЦ ОРГРЭС».

Результаты испытаний распространяются только на образцы, подвергнутые испытаниям